
Вестник научно-технического развития 

www.vntr.ru № 10 (122), 2017 год 

 

 39 

УДК 534.1 

 

ON THE THERMOMECHANICAL APPROACH IN THE ANALYSIS OF 

SELF-OSCILLATING PROCESSES EXCITED DURING CUTTING 
 

© G.K. Korendyasev 

IMASH RAN, Moscow, Russia 

korenduba@gmail.com 

 
Abstract. A thermomechanical approach for describing self-oscillations in the processing of 

materials by cutting is considered. A corresponding hypothesis is formulated, which, to a certain 

extent, generalizes the previously known models. Analytic and digital models of self-oscillations 

based on the introduced hypothesis are described. The results of experiments demonstrating the 

adequacy of the theory are presented. 
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Аннотация. Рассмотрен термомеханический подход для описания автоколебаний при 

обработке материалов резанием. Сформулирована соответствующая гипотеза, которая в 

определенной степени обобщает ранее известные модели. Описаны аналитические и 

цифровые модели автоколебаний, полученные на основе введенной гипотезы. Представлены 

результаты экспериментов, демонстрирующих адекватность теории. 
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1. Introduction. Self-oscillations emerging during metal machining are the main limiters of 

productivity and accuracy of processing on metal-cutting machine tools. Many Russian and foreign 

researchers were engaged in search for physical causes of self-oscillations beginning during metal 

machining. A great number of this procedure models were developed. The suggested models can be 

conditionally divided into two large groups. The first group of such models is based upon static or 

dynamic two-valued property of the cutting force, and cause isolation of this two-valued property is 

performed using single-degree-of-freedom systems. The most widespread models that belong to this 

group are: a model based upon cutting force decreasing with speed [1]; a model based upon cutting 

force ambiguousness during downcutting and repulsion of the cutting tool [2]; a model based upon 

retardation of cutting force change from change of a layer thickness [3]. All theories known to us as 

belonging to this group are based on regularities observed experimentally, but they do not open real 
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physical causes of these phenomena and do not provide predicting a level of vibration during the 

cutting. To the second group we can refer those theories that are based on presentation of a 

technological system in a form of two or more degrees of freedom, where self-oscillations are 

explained by an availability of coordinate connection between them [4, 5, 6, 7]. This phenomenon is 

studied sufficiently well. The mathematical models are already formed and the methods of struggle 

against such type of self-oscillations are developed. But the principle of coordinate connection 

cannot explain self-oscillations actuation in twisting systems and in systems with one degree of 

freedom. On metal-cutting machine tools the twisting systems are widely used, and the systems 

with one degree of freedom are frequently met when working with symmetrically arranged edges, i. 

е. when performing drilling, hole enlarging, pulling through etc. operations. These speculations 

suggest an idea about existence in technological systems of a physical principle responsible for 

actuation of self-oscillations, depicted by models with one degree of freedom. 

 

2. Thermomechanical oscillations. Attentive consideration of existing models of self-oscillations 

when cutting with one degree of freedom [1, 2, 3] suggests a thought, that phenomena, laying in 

their foundation, are the results of a unique deep physical principle. Disclosure of this principle will 

provide more deep understanding of the nature of self-oscillations during cutting and to offer 

methods of struggle against this phenomenon. 

Consideration of connections between mechanical and thermodynamic processes, taking place 

during metal cutting, permitted suggesting a hypothesis about thermomechanical nature of self-

oscillations during cutting. 

The cutting forces arising during the cutting process are created mainly by means of plastic 

deformation of a cutted layer of the half-finished article material and overcoming of friction forces 

on the operational surfaces of the working tool. The mechanical energy, spent on plastic 

deformation of half-finished article material and friction between surfaces of a tool, cutting waste 

and the product is converted into heat energy, that results in essential increase of the cutting zone 

temperature [8]. At increasing temperature of the half-finished article material some structural 

conversions take place, and, as a result, mechanical properties of the processed material, such as 

elasticity modulus, flexural yield stress and limit of the ultimate strength become changed, that in 

its turn results in change of cutting force. Thus, mechanical and heat processes taking place during 

cutting, become continuously connected each with other and interdependent each from others. 

A majority of metals processed by cutting has a drooping dependence of their mechanical 

characteristic upon temperature as their distinctive feature. The cutting force directly depends on the 

limit of the ultimate strength σ of the processed material and in the first approximation is 

proportional to it. Consequently, dependence “cutting force – temperature” also has a negative 

angle of slope, that determines potential instability of the system, and, as a consequence, has a 

possibility of emergence of self-oscillations in it. 

 

3. Mathematical model. Let us consider a dynamic model shown in fig. 1, in which the cutting 

force F=F(Θ) is a known steadily decreasing function on the temperature   in the cutting zone.  

 

 
Fig. 1. The self-oscillating system. 
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An equation of the cutting tool oscillations has the form  

 

𝑚�̈� + 𝑏�̇� + 𝑐𝑢 = 𝐹(𝜃) (1) 

 

For calculation of temperature in the cutting zone let us write an equation of energy balance 

connecting change of temperature in the cutting zone with mechanical energy converted into the 

heat energy and the heat released into ambient medium 

 

𝐶𝑀�̇� + 𝐻(𝜃 − 𝜃0) = 𝐹(𝜃)(𝑣 − �̇�), (2) 

 

where Θ0 is the ambient medium temperature; M is the heated mass; С is the specific heat capacity; 

H is the coefficient of heat transfer.  

The system of equations (1), (2) has a particular solution corresponding to steady equilibrium state  

�̇� = 0, �̇� = 0 
From equation (1) let us find a position of a cutting tool in the steady state 

 

𝑢𝑚 = 𝐹𝑚/𝑐 (3) 

 

where Fm=F(Θm), and the equilibrium temperature Θm is found by solving the following equation 

derived from the equation (2) 

 

𝐹(𝜃) = (𝛩 − 𝜃0)𝐻/𝑣. (4) 

 

Now let us go over to estimation of stability of the found equilibrium condition. With this purpose 

let us introduce the new coordinates x=u-um and ϑ=Θ-Θm, describing small deviations of the 

coordinate and temperature from the above obtained stationary values and let us carry out 

linearization of the cutting force dependence on the temperature in vicinity of these values. 

 

𝐹(𝜃) = 𝐹(𝛩𝑚) + 𝜒(𝛩 − 𝜃𝑚) = 𝐹𝑚 + 𝜒𝜗, (5) 

 

where 

m
d

dF









)(

 

In the result from the equations (1), (2), taking into account equalities (3), (4), having limited by 

values of the first order of smallness, we obtain equations describing small oscillations with respect 

to equilibrium position 

 

𝑚�̈� + 𝑏�̇� + 𝑐𝑥 = 𝜒𝜗, (6) 

 

𝐶𝑀�̇� + (𝐻 − 𝑣𝜗) = −𝑐𝑢𝑚�̇�.  

 

From equation (6) we find  

 

𝛩 = −
1

𝜒
(𝑚�̈� + 𝑏�̇� + 𝑐𝑥); �̇� = −

1

𝜒
(𝑚𝑥 + 𝑏�̈� + �̇�) (7) 

 

After substitution (3) into (2) we shall obtain on rearrangement the following equation with respect 

to x: 
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𝑥 + (2𝑛 + ℎ − 𝐺𝑣)�̈� + [𝜔0
2 + 2𝑛(ℎ − 𝐺𝑣) + 𝐺𝜔0

2𝑢𝑚]�̇� + (ℎ − 𝐺𝑣)𝜔0
2𝑥 = 0, (8) 

 

where .;;;2 2
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Let us write characteristic equation: 

 

𝑎0𝑝
3 + 𝑎1𝑝

2 + 𝑎2𝑝 + 𝑎3 = 0, (9) 

 

where 
2

03

2

0

2

0210 )(;)(2;2;1  GvhauGGvhnaGvhnaa m   In accordance with 

Routh – Gurvitz criteria for the system stability described by the third order equation, except for 

positive coefficients of the characteristic equation (9) it is necessary to provide fulfillment of the 

condition a1a2>a0a3, which, taking into the account the accepted designations, takes the form 

 

(2𝑛 + ℎ − 𝐺𝑣)[𝜔0
2 + 2𝑛(ℎ − 𝐺𝑣) + 𝐺𝜔0

2𝑢𝑚] > (ℎ − 𝐺𝑣)𝜔0
2 (10) 

 

First of all, we are concerned in the case of drooping characteristic of the cutting force, at which the 

derivative χ<0, and according to designations adopted in (8) G<0 . In this case in the equation (9) 

the coefficients a1>0, a3>0,  and for the provision of stability except for condition (10) it is 

necessary to require fulfillment of the inequality a2>0.  

It is easy to show, that this inequality is weaker than the condition (10). Really, if we shall state 

a2=0, then the left part of the inequality (1) becomes equal to zero and, consequently, the inequality 

is violated, i.е. destabilization takes place and self-oscillations are actuated. Thus, for estimation of 

stability and building a boundary of stability loss area it is necessary to use the inequality (10).  

In absence of dissipation in the oscillatory system, i. е. at n=0 the inequality (10) is violated and 

self-oscillations are actuated at any value G<0 (or χ<0). 

The considered model is built at certain assumptions. It is assumed that heating at cutting takes 

place uniformly in a certain volume, having the mass M, and transfer of heat into the medium takes 

place through a boundary of sharp temperature difference.  

From exploration of temperature processes, accompanying metal cutting, it is known, that a zone of 

highest temperatures is really situated in a sufficiently narrow vicinity of the cutting tool contact 

with a half-finished article, and change of temperatures during dissipation of heat into a medium 

takes place with sufficiently high gradient. Analytic solution of a redetermined model of this 

process is hardly possible.  

Therefore further study of thermomechanical self-oscillations was performed using digital methods. 

 

4. Finite-element model. A two-dimensional finite-element model is shown in fig. 2. During its 

constructing we used an ideal elastoplastic model made of material, which elasticity modulus and 

limit of stretching strain depend upon temperature. The tool is simulated as an oscillatory system 

with one degree of freedom. The friction between the tool, a half-finished article and a cutting waste 

is considered to be a Coulomb type.  

The shear deformation critical value is chosen as the criterion for estimation of chip formation, at 

which achievement the element is deleted from a mesh  
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Fig. 2. Boundary conditions. 

 

As a result of calculations a possibility of self-oscillations excitation was confirmed. Both transition 

and steady-state modes of self-oscillations were obtained. In fig. 3 a) а change of temperature is 

shown during a procedure of self-oscillations establishment in the process of a cutting tool 

downcutting into the material. 

It is possible to observe, that at the beginning  of cutting the process is accompanied with fast 

heating of the material, and at temperature of Θ~200deg. generation of self-actuated oscillations 

takes place further transfer to steady-state condition of self-oscillations with amplitude of 

temperature oscillations about 40 deg. in vicinity of average temperature about 400 deg. takes place 

as a consequence of non-linear temperature dependence of material mechanical characteristics upon 

temperature.  

 

 
Fig. 3. Distribution of temperatures in a cutting zone in opposite phases of oscillations.  

 

In fig. 3 b) and c) the pictures of temperature distributions are given in the cutting zone in two 

phases of cutting tool oscillations in a steady-state mode: а) at a moment when maximal value of 

temperature is achieved; b) at a moment when minimal value of temperature is achieved. In fig. 3, 

b) a local area is distinctly visible with high temperature in the primary zone of shear at formation 

of cutting waste. Namely assumption about similar localization and presence of a boundary of sharp 

temperature difference with ambient medium was one of basic assumptions adopted during 

mathematical model (1, 2) constructing. 

Study of a given model permits performing the impact analysis of  processed material properties, 

technological system parameters and cutting conditions onto nature and level of vibration during 

metal cutting processes. We have found stability boundaries, and investigated influence of self-

oscillations onto shape of the chip, as well as studied influence of thermomechanical properties of 

the processed material onto the nature and intensity of vibration. 

In the result of simulation we determined laws of changing in time for main parameters of self-

oscillation process. An example of solution is shown in fig. 4.  
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Fig. 4. Graphic charts of main parameters changing in time for steady state self-oscillating process. 

 

Here: 1 is a curve of cutting tool oscillations; 2 is a curve for the cutting tool speed with respect a 

half-finished article moving at a constant speed; 3 is a curve for the cutting force; 4 is a curve for 

the temperature in a contact zone for the cutting tool and the cutting waste. 

Oscillations of the cutting tool take place at a frequency of elastic system self-oscillations according 

to a law close to harmonic (curve 1). But relative speed of the cutting tool has a segment, where this 

speed is equal to zero, i.e. the cutting tool is immovable with respect to a half-finished article and its 

speed in absolute motion is equal to a speed of the product. During the mutual motion the energy 

from a drive of a half-finished article is saved by the cutting tool elastic system, and then, when the 

force of a spring will be sufficient for overcoming the cutting resistance, a countermotion of the 

cutting tool begins. From comparing a chart of relative speed with a chart of temperature changing 

(curve 4) it is seen, that for motion in the same direction and relative stop of motion the temperature 

in the cutting zone decreases, and during the countermotion it increases. Namely such change of 

temperatures creates conditions for emergence and support of self-oscillations.  

Special attention should be given to a chart of cutting force dependence from time (curve 3). The 

cutting force on the average follows the change of temperature, but its chart comprises additional 

high-frequency components. It seems likely that they are consequences of discontinuity of the 

contact line connecting the cutting waste and a half-finished article. Correctness of this assumption 

is confirmed by the fact that the frequency of such high-frequency oscillations is approximately 

equal to the frequency of destruction of finite elements on the contact line. A certain contribution 

into the overall picture of cutting force oscillations are made by elastic oscillations of the cutting 

waste. 

It is interesting to pay attention onto an indicative gap observed on the chart on the boundary of 

transition to a segment of relative stop of the cutting tool. This gap is explained by passage of 

segments where elastic unloading and loading take place in the cutting zone at transfer from plastic 

deformation to elastic loaded condition and vice versa. 
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5. Some conclusions. Investigation of finite-element model of cutting tool self-oscillations 

provided checking the correctness of an assumption about thermomechanical nature of self-

oscillations during the cutting and adequacy of this process mathematical model. The type of 

obtained results is in agreement with results of natural experiments [9, 10]. Created models can 

serve for finding cutting modes, providing minimal level of vibrations, as well as during designing 

metal-cutting tools and furniture. Understanding of physical mechanism of self-oscillations 

excitation as an interdependent thermomechanical process allows making clear physical sense of 

phenomena, being fundamental for the most commonly encountered models of self-oscillations 

during the cutting [1-3]. At present time an experimental work is carried out on checkout of 

adequacy for the thermomechanical model of self-oscillation excitation during the cutting, 

consisting in full-scale study of vibratory displacement fields, temperature fields and deformation 

fields emerging during self-oscillations. 
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