<u>www.vntr.ru</u> №8 (84), 2014 г.

УДК 6250.534.1

ПОЛУЧЕНИЕ УДАРНОГО ВОЗДЕЙСТВИЯ ПОСРЕДСТВОМ ЭЛЕКТРОМАГНИТЫХ МЕХАНИЗМОВ

ЭЛЕКТРОМАГНИТЫХ МЕХАНИЗМОВ Виталий Львович Крупенин¹, Константин Борисович Мягкохлеб ²

¹Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук, Москва, Россия

krupeninster@gmail.com

²Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков, Украина

Аннотация. Представлены методы формирования ударов посредством электромагнитных вибростендов для ускоренных виброударных испытаний на надежность, а именно формирования переднего фронта и спада ударов. Развиваются соответствующие теоретические положения, обосновывающие указанные методики.

Ключевые слова: удары, ускоренные виброиспытания, вибростенды, обратные связи, уравнение движения, форма задающего импульса, передний и задний фронты.

GETTING IMPACT EFFECTS BY MEANS OF ELECTROMAGNETS MECHANISMS V.Krupenin, K. Myagkokhlib

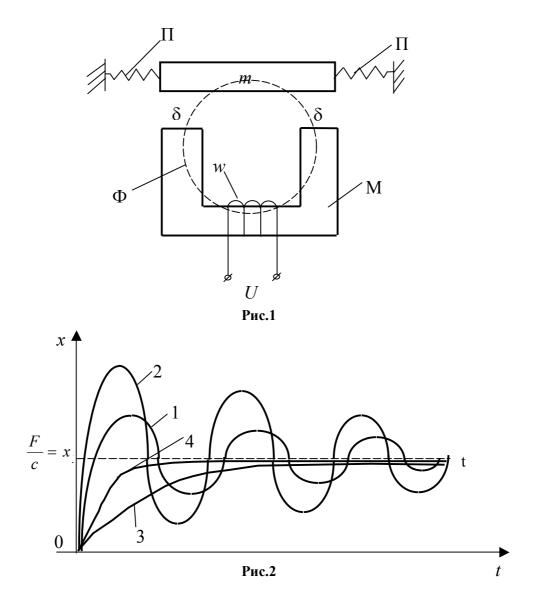
¹Federal budget funded research Institute of Machines Science named after
A.A. Blagonravov of the Russian Academy of Science

²The A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of
Sciences of Ukraine (IPMash NAS of Ukraine)

Abstract. Presented methods of forming impacts by electromagnetic shakers for vibro-accelerated reliability tests, namely the formation of the leading edge and fall impacts. Develop appropriate theoretical justifications for these techniques.

Keywords: impacts, vibration tests accelerated, shakers, feedbacks, the motion equation, the shape of the triggering pulse, leading and trailing edges.

В современном машиностроении при решении задач повышения надёжности и работоспособности изделий, а так же при прогнозировании динамической прочности и ресурса энергетического оборудования, работающего в условиях динамического нагружения, большое значение имеет использование результатов стендовых испытаний. На стендах воспроизводится динамическая нагрузка соответствующая воздействию вибрации и ударов на объект в условиях транспортировки или эксплуатации. Другими словами, нашей задачей является моделирование и воспроизведение виброударных нагрузок которым подвергается изделие в условиях реальной эксплуатации, а точнее максимально точное воспроизведение этих нагрузок (ср. [1]). Снижение себестоимости испытаний за счет сокращения их длительности, то есть ускоренные виброударные испытания и стоимость оборудования в настоящее время весьма актуально. Результаты приведенных ниже исследований могут явиться одним из существенных факторов, определяющих научно обоснованные принципы проектирования машин.


1. **Постановка задачи**. Способность электромагнитных механизмов воспроизводить удары известна [2, 3]. На наш взгляд, улучшение процесса формирования ударного импульса может заключаться в следующем. Для этого на рис. 1 изобразим электромеханическую схему электромагнитного механизма, где: m — масса подвижной части (якоря); M — магнитопровод; w — число витков электрической обмотки; δ воздушный зазор; U — входное напряжение; Φ - магнитный поток; Π — пружины.

<u>www.vntr.ru</u> №8 (84), 2014 г.

Якорь совместно с пружинами представляет собой колебательную систему, уравнение движения которой имеет вид

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = F \quad , \tag{1}$$

где b, c – коэффициенты затухания и жесткости соответственно; x – перемещение; F - сила.

При F=const, в случае приложения ее к якорю, в последнем возникает переходной процесс, графически изображенный кривой 1 на рис. 2. Здесь представлено графическое изображение переходных процессов в системе при различных значениях силы сопротивления. Кривая 1- затухающая из-за действия силы сопротивления $b\dot{x}$. Если уменьшить силу сопротивления, то есть коэффициент b, то кривая переходного процесса будет иметь вид 2. При увеличении коэффициента b можно добиться апериодического переходного процесса якоря (кривая 3). Количественные соотношения для вариации видом переходного процесса якоря следующие:

при $\frac{b}{2m\omega_0} < 1$ — процесс колебательный; при $\frac{b}{2m\omega_0} \ge 1$ — процесс апериодический. В этих формулах $\omega_0 = \sqrt{\frac{c}{m}}$ — собственная частота колебаний. При $\frac{b}{2m\omega_0} = 1$ переходной процесс наиболее быстро и апериодично преобразуется в установившийся (кривая 4).

www.vntr.ru №8 (84), 2014 г.

2. Уравнения движения. Увяжем эти количественные соотношения с движением якоря в виде ударного импульса. Для воспроизведения якорем удара необходимо, чтобы передний фронт импульса был крутым, а спад импульса - плавным. Последнее предусматривает исключение послеударных колебаний якоря. А это означает, что для формирования переднего фронта надо, чтобы $\frac{b}{2m\omega_0} < 1$, вплоть до 0, а для спада, чтобы $\frac{b}{2m\omega_0} \ge 1$

(лучше формирование кривой 4). В электромагнитном механизме, изображенном на рис. 1, b = const. Однако с помощью определенных обратных связей в механизие можно добиться выполнения поставленных требований при воспроизведении ударов. В работе [4] были разработаны обратные связи для системы электродинамического возбуждения ударов. Для электоромагнитных механизмах - обратные связи будут другими,е со своими особенностями. Рассмотрим их.

При формировании переднего фронта удара уравнение движения якоря должно иметь вид

$$m\frac{d^2x}{dt^2} + (b - b_{oc})\frac{dx}{dt} + cx = F \quad , \tag{2}$$

где $b_{OC} \approx 0$. А при формировании спада удара уравнение движения якоря должно быть следующим

$$m\frac{d^2x}{dt^2} + (b + b_{oc})\frac{dx}{dt} + cx = F \quad , \tag{3}$$

где b_{OC} ≥1.

Уравнения (2), (3) запишем так

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = F + b_{oc}\frac{dx}{dt} \quad , \tag{4}$$

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = F - b_{oc}\frac{dx}{dt} \qquad (5)$$

Из (4) и (5) видно, что в первом случае обратная связь по скорости является положительной, а во втором случае — отрицательной. Причем эти обратные связи действуют при формировании одного ударного импульса, то есть в системе электромагнитного механизма происходит переключение обратной связи с положительной на отрицательную.

Детальное формирование обратных связей в электромагнитном механизме необходимо осуществлять с учетом анализа процесса воспроизведения удара, начиная с подачи на зажимы обмотки напряжения U в виде импульса. Известно, что если электромагнитный механизм воспроизводит гармонические вибрации, то частота вибрации тела с массой m в два раза выше, чем частота задающего сигнала. Кроме того, на это тело действует еще постоянная составляющая силы притяжения.

Что же происходит в электромагнитном механизме при ударе? Ответить можно двумя способами.

3. Результаты. Первый способ заключается в представлении ударного импульса рядом гармонических составляющих и электромагнитный механизм в таком случае воспроизводит за время удара полигармоническую вибрацию.

Второй способ заключается в анализе физики работы электромагнитного механизма, связанной непосредственно с формой и параметрами задающего импульса.

Конечно, обратные связи будут отличаться в первом способе от второго.

Использование спектрального представления различных ударов, следующих с различными частотами, на наш взгляд, неэффективно из-за недостаточного знания меняющегося числа гармоник. По этому способу нужны фильтры выделения гармоник, что слишком громоздко. Второй способ формирования ОС более простой. В нем фигурируют вибродатчик, согласующий усилитель, цепь выделения величины скорости колебаний \dot{x} , что связано с подключением к согласующему усилителю в случае, если вибродатчик является

www.vntr.ru №8 (84), 2014 г.

измерителем перемещения х дифференцирующего звена.

Так как в этом случае сигнал обратной связи, пропорциональный \dot{x} , будет проходить по всему прямому каналу электромагнитного механизма, то необходимо определить каким он будет в виде дополнительного слагаемого (со своим знаком) к воздействующей силе F. В электромагнитном механизме

$$F = \frac{\Phi^2}{\mu_0 S} \quad , \tag{6}$$

где μ_0 — магнитная проницаемость воздуха; S — площадь поперечного сечения полюсов магнитопровода M у воздушного зазора δ .

Обычно для электрической обмотки ЭММ индуктивное сопротивление превышает активное r. Уравнение электрической цепи имеет вид

$$U = ri + L\frac{di}{dt},\tag{7}$$

но так как r мало, то $U=L\frac{di}{dt}$ и электрический ток $i=\int Udt$. Магнитный поток Φ связан

c током i по закону полного тока, а именно

$$iw = \frac{\Phi}{G}, \quad G = \frac{\mu_0 S}{2\delta} \quad , \tag{8}$$

где G – магнитная проводимость ЭММ.

Подставляя (8) в (6), видим, что

$$F = \mu_0 S \left(\frac{iw}{2\delta}\right)^2 \quad . \tag{9}$$

Выходные сигналы звеньев ОС в виде $b_{oc}xp$, где $p = \frac{d}{dt}$ – оператор

дифференцирования, складываются с напряжением задания U в сумматоре (со знаком + или -) и суммирующий сигнал $(U\pm bxp)$ создает в электрической обмотке ток

$$i = \int \left(U \pm b_{oc} \frac{dx}{dt} \right) dt \,. \tag{10}$$

Представление тока i вида (10) в формуле (9) в виде

$$i^{2} = \left[\int \left(U \pm b_{oc} \frac{dx}{dt} \right) dt \right]^{2} = \left(\int U dt \pm b_{oc} x \right)^{2}$$

не обеспечит решения поставленной задачи об изменении общего коэффициента затухания в колебательной системе электромагнитного механизма. Чтобы решение задачи было определенным, необходимо создать структуру электромагнитного механизма с обратной связью, соответствующую схеме, изображенной на рис. 3.

<u>www.vntr.ru</u> №8 (84), 2014 г.

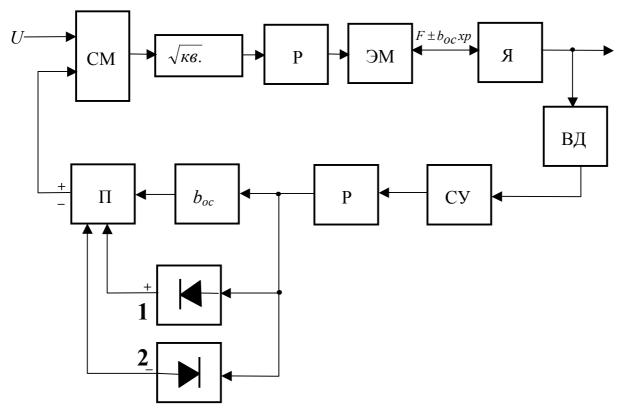


Рис. 3

Здесь изображены следующие звенья: СМ – сумматор [алгебраический (±)]; $\sqrt{\kappa g}$. – звено извлечения квадратного корня; Р – дифференцирующее звено; ВД – вибродатчик; СУ – согласующий усилитель; ЭМ – электромагнит; П – переключатель сигнала b_{oc} px со знаком (+) или (–) в соответствии с выходным сигналом выпрямителей 1 или 2. Знаки (+) или (–) определяются знаком скорости px. На переднем фронте ударного импульса [sign(px) = +1], на спаде [sign(px) = -1].

Имея представленную структуру всего электромагнитного механизма, получим следующие математические соотношения

$$i(t) = \int \frac{d}{dt} \left(\sqrt{U(t) \pm b_{oc}} \frac{dx(t)}{dt} \right) = \sqrt{U(t) \pm b_{oc}} \frac{dx(t)}{dt} \quad . \tag{11}$$

Если (11) подставить в (9), то получим

$$F = \mu_0 S \left(\frac{w}{2\delta}\right)^2 \left[U(t) \pm b_{oc} \frac{dx(t)}{dt}\right] = \mu_0 S \left(\frac{w}{2\delta}\right)^2 U(t) \pm \mu_0 S \left(\frac{w}{2\delta}\right)^2 b_{oc} \frac{dx(t)}{dt} \quad . (12)$$

Из (12) видно, что второе слагаемое пропорционально скорости колебаний якоря. Уравнение движения якоря с учетом (12) имеет вид

$$m\frac{d^2x}{dt^2} + \left[b \pm \mu_0 S\left(\frac{w}{2\delta}\right)^2 b_{oc}\right] \frac{dx}{dt} + cx = \mu_0 S\left(\frac{w}{2\delta}\right)^2 U(t) . \tag{13}$$

Для формирования переднего фронта удара необходимо, чтобы удовлетворялось условие

№8 (84), 2014 г.

$$\frac{1}{2m\omega_0} \left[b - \mu_0 S \left(\frac{w}{2\delta} \right)^2 b_{oc} \right] << 1.$$
(14)

Условие для спада ударного импульса:

$$\frac{1}{2m\omega_0} \left[b - \mu_0 S \left(\frac{w}{2\delta} \right)^2 b_{oc} \right] \ge 1 \quad . \tag{15}$$

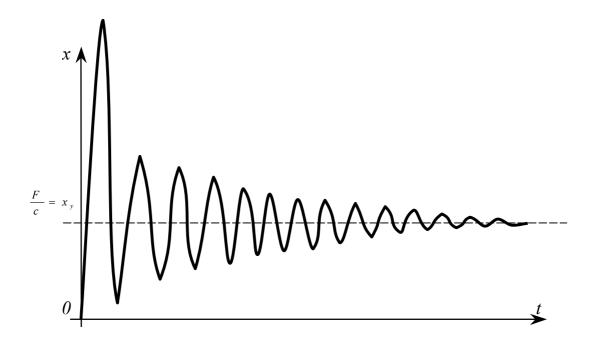


Рис.4.

Реализация системы управления электромагнитного механизма с обратной связью, соответствующая схеме, изображенной на рис. 3, обеспечит решение поставленной задачи об изменении общего коэффициента затухания в соответствующей колебательной системе электромагнитного механизма. Ообеспечивается возможность воспроизведения функции удара, с графиком заданной формы, например показанной на рис. 4, при помощи электромагнитного механизма, схема которого представлена на рис. 1. Выражения (14), (15) дают адекватное представление о количественной стороне нахождения приемлемых решений проблемы формировании ударных импульсов посредством электромагнитных механизмов.

Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований (проект №№ 13-08-90419 Укр_ф_а) и Государственного Фонда Фундаментальных Исследований Украины (проект №Ф53.7/038).

Список литературы

- 1. Божко А.Е., Крупенин В.Л., Мугин О.О., Мягкохлеб К.Б. О задаче воспроизведения широкополосной вибрации посредством виброударных систем // Интернет-журнал «Вестник научно-технического развития» <u>www.vntr.ru</u> 2013. №9 (73). С. 16-27.
- 2. Под ред. проф. Клюева В.В. Испытательная техника. М: Машиностроение. 1982. -528 с.
- 3. Божко А.Е., Крупенин В.Л., Мягкохлеб К.Б., Динамика электромагнитного вибровозбудителя при воспроизведении удара // Интернет-журнал «Вестник научно-

www.vntr.ru

№8 (84), 2014 г.

технического развития». <u>www.vntr.ru</u>. 2013. №8 (73). С. 3-11.

4. Божко А.Е., Иванова З.А., Шипилло С.В. Электродинамическое возбуждение ударов. Киев: «Наук. Думка». 1999. - 198 с.