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SOME SPECIFIC VIBRATORY EFFECTS ARISING IN MECHANISMS
WITH NONLINEAR POSITION FUNCTION

I.1. Vulfson

Abstract

In the paper we have presented an overview of some problems, among which we should
single out the elimination of following negative dynamic effects: the effects arising from the
nonlinear geometrical characteristics of mechanisms; the effect arising from the joint action of
nonlinear position function and clearances; the effects of excitation vibratory regimes caused by
non-stationary friction in kinematic pairs of cyclic mechanisms.

1. The effects arising from nonlinear geometrical characteristics of mechanisms

Preliminary remarks. A distinctive property of machine drives are the motion transfor-
mation and programmable displacement of actuators according to nonlinear position function
I1(¢), where ¢ is the coordinate of an input link [1,2]. The mechanisms realized programmed
motion (“cyclic” mechanisms) are playing a double role in the vibratory system on the one hand
being the source of vibration excitation, and on the other hand being a critical object to vibration
protection.

For example, on Fig.1 is presented a typical cyclic mechanism and its dynamic model.
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Dynamic model

Fig.1

Those models were created by combining the block diagrams of vibratory mechanical
systems with certain kinematic analogs II;, which determine the kind of connections between

the input and output links (Fig. 1). Here J;,c;,\y; are respectively moments of inertia, stiffnesses
and energy dissipation coefficients of the corresponding links in the kinematic chain.
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Any coordinate in the absolute motion @, is a combination of the “large” coordinate

IT.(¢,) , realizing the motion of the absolutely rigid drive, and the “small” coordinate Ag,,

whose ensemble corresponds to the number of vibratory system degrees of freedom H.
Strongly speaking, in this case the set of differential equations is nonlinear. However,
with representing the position functions as truncated Taylor series the linearization in the vicinity

of the current value of , is carried out. Than the position functions retained their nonlinear

properties relative to the large coordinate, and only small deformations entered the correspond-
ing expressions in a linear fashion. After the transformation to the quasinormal coordinates the
original system can be described by differential equations of the form

P42y, +pr()y=W.() (r=1H). (1)
Using the method of conventional (fictitious) oscillator (Vulfson, 1969) the solution y.

has the following structure [2,3]:
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where Q) (f) = p expz, is conventional “natural” frequency; p — an optional parameter

U, = [1 —~ 2exp(—8r]Vr )cos 27N+ exp(—29,,]V, )]075 ;
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with the dimension of a frequency; N, =p./ o.
According to the method of conventional oscillator the relation between the function
z, and variable frequency p, (#) will have the form of the following differential equation, re-

sponding to the particular "conventional oscillator" with the excitation 2 pr2 (t) [2,3]:
Z.-0,527 +2pre” =2p°(1). (4)
By slow changes of pr2 (t) the dynamic components in the Eq:(4) is small in relation to
the static one. For this case the solution (2) corresponds to the WKBJ approximation method

(Qr zlyr)"

Violating of dynamic stability conditions by slow change of parameters. According to
(2) the amplitude of free and accompanying vibrations excited is changing proportional to the
function

t
_ -0,5
S, =p, ()" exp[-[n, (§)dE]. (5)
0
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With changing parameters it may happen that dS,./dt > 0, therefore the customary de-

crease of amplitudes can be disturbed. In the similar case the amplitude modulation exists, where
the zone of decrease alternates of the zone of increase. Therefore, contrary to a parametric reso-
nance we do not experience the unlimited increase of amplitudes. Under some unfavorable con-
ditions the increase of amplitudes may become rather intensive. Using (5) the dynamic stability
conditions on any time interval can be written as [2—5]

n +0,5p./p.>0. (6)

It is possible to show that condition (6) can also be obtained by the direct Lyapunov
method and is, consequently, the sufficient condition for asymptotic stability. Compliance with
this condition removes also the possibility of the build-up in the zones of the main parametric
resonances.

Using the method of conventional oscillator a dynamic effect caused by a sudden tempo-

rary change in the “natural” frequency of a system (so called "parametric impulse") is consid-
ered in [2,6].

2. The effect arising from the joint action of nonlinear position function and clear-
ances.

For cyclic mechanisms the clearance-effect leads to possibility of vital distortion of kin-
ematical characteristics and increase the drives vibroactivity. Two cases are revealed. In the first
case the clearance proves as a nonlinear element to which a possibility of generating vibratory
impact modes is connected. In the second case reaction to a clearance manifests itself as an im-
pulse in linear systems. This dynamic effect is equivalent to impact arising from disruption of a
continuity of the function dIl/dg,. Some dynamic criterions that allow forecasting the excita-

tion of vibratory impact regimes are offered [5-9].

In the linkages the clearance effect sometime softens due to the conjugate action between
the contracting surfaces of hinge (Fig. 2). On many researches of this problem it is supposed, that
the vibration excitation at elimination of breaks of the kinematic contact in clearances do not
arise. However at parametrical pulses the arising effect is close to impact. This effect, named
pseudo-impact, under certain conditions is transformed to the impact with disruption of contact
of a kinematic circuit.

The offered model of clearance-joint (Fig. 3) is submitted as a pendulum that oscillates in a ro-
tating power field about the elastic support [9]. The analysis of this model allows defining conditions
of stability on the limited time intervals and critical values of parameters of system at which the exci-
tation close to impact takes place.

) X
' B!!
Fig.2 Fig.3
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The relation between linearized tangential and normal stiffnesses of "links" A4'A4",B'B"-c/,c/
can be presented as [9]

RI|K0.5¢]s, +|R]) . (7)

¢ /e =
where R’ (i=1,2) is the reaction in the corresponding hinge calculated at the kinetostatic level;

s, 1s the value of clearance.
In order to obtain comparable results in varying the system parameters the quasielastic

coefficients were scaled by the stiffness coefficient ¢, =J, pé / 132 , where p, is the partial fre-

quency realized conditionally for a zero pressure angle and clearance-free elastic joint between
coupler and the rocker; J, is the reduced moment of inertia of the rocker; /; = BD. For the
closed kinematic chain an increase of natural frequency parameter 1, = p,/®, results in the
slow frequency variation being interrupted by intense parametric pulsations. In turn this may re-
sult in a considerable growth in the level of dynamic errors and the vibration activity of the
mechanism [9].

The dynamic effect under analysis is illustrated on Fig.4 by the plots of functions @,+",
@3+'', which are proportional to the ideal angular accelerations of coupler and rocker, and @,",
@3"', calculated taking into account the clearances and elasto-dissipative properties of hinges. We
see that at a rather high value of 7, =50 (Fig.4a) accompanying vibrations are intensively ex-

cited in the zones of parametric pulses. At 1, =10 (Fig.4b) the effect is considerably attenu-

ated. An analysis shows that the dynamic stability of the system over a finite time interval is an
important factor. The corresponding sufficient conditions (7), based on the method of conditional
oscillator, lead to the form [2]

9, >|9)]=[in(n; /n,)
90

N, =N,(¢, +A@,), N, =1,(¢, —Ag,) , Ap, =t/M,(¢,).

; (®)

are logarithmic decrement and its critical value for the mode r,

where 9, ,
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Fig. 4. Curves @+, @",03+"", @3'": I - @' and @3+"', 2 - @,"" and ;" for 3=0.2,
3 - the envelopes of the plots of ¢,"” and ¢;" for 9;=0.06 .
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Real damping is determined by the effective value of the logarithmic decrement 9, = 9, —

The value max 3’ can be used as an efficient criterion for characterizing the level of vibration.
The envelopes shown in Fig.4a (curves 3) correspond to the logarithmic decrement decreasing

from 9; =0,2 to 0,06. We see that a decrease in 3; intensifies the dynamic instability and vibra-
tion excitation.

For 17,=10 and 9; =0,2 ,9i remains nearly zero for a rather long time, thus compensating the dis-
sipative factors (Fig.4b).

The transformation the pseudo-impact to impact is evidently visible at comparison of
phase trajectories (Fig.5)

Pseudo-impact Impact

Fig. 5

3. The effect of excitation owing to fall out of synchronism in multi-sections drives
with lattice structure.

The researched effect is observed in drives with regular structure, which are used in ma-
chines for realization of repeating technological and transport operations [2,5,10]. The theory of
regular oscillatory systems is based on the analysis of the lattices consisting of masses and
springs. For the first time this problem was considered by Born and Karman with reference to
the analysis of the heat capacity of crystals. The basic directions of the further development of
this theory are reflected in [11].

With reference to machines with cyclic mechanisms the theory of regular oscillatory sys-
tems requires additional development. First, dynamic models of drives have more complex inter-
nal structure of each repeating module which formed not only a simple connected chain, but also
brunched and ring structured vibratory systems with nonlinearities and nonstationary dynamic
connections [2,5,10,12]. Should be noted, that in some cases the conditions of regularity are
realized only approximately.
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Fig. 6

The dynamic model of a drive (Fig. 6), consisting of subsystems of the main shaft (k =1)
and an actuator (k =2) connected to the main shaft with n cyclic mechanisms is considered.
Each of mechanisms is submitted as consecutive connection of the elements, which are taking
into account elastic-dissipative, inertial, and kinematic characteristics, and clearances. The fol-

lowing symbols are accepted: J,, - the moments of inertia; c,,, ¢, - factors of rigidity;

V., Y- factors of dispersion; H((pjjl) - function of position. It is supposed, that dynamic

characteristics of the main shaft and an agency are given to sections of entrance and target parts
of cyclic mechanisms. Besides angular speed ® on "input” is accepted by a constant, that usually
as a first approximation corresponds to real machines at a rational choice of characteristics of the
electric drive and transfer mechanisms. The considered oscillatory system has 2n+1 degrees of
freedom. As the generalized coordinates we shall accept the dynamic mistakes equal to devia-
tions of absolute coordinates in the appropriate sections of inertial elements from coordinates of

program movement.. Thus for the main shaft g, =@, =@, ¢,,, =¢,, —¢,, where

@, =ot, j=1n+1,and foran actuator — g, , =¢,, —I1(¢,) (j=2). The accepted dy-
namic model is described by the set of nonlinear differential equations with slowly varying fac-
tors [12]. At IT' = 7,sin @, the computer simulation researched was carried out with variation
of number of identical mechanisms n and other parameters of system [12].
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Fig. 7

Under favorable conditions the queasy-synchronous mode of actuators vibrations is re-
alized (a mode of type 1, Fig.7a). At this form the elastic element ¢, is not deformed. For

modes of type 1 the “natural” frequency is close to a case with ¢;; — oo (the rigid main shaft)
and are described by dependence

p, = p\/l +2¢,[1=cos((m—-N)n/n)], (m=1n; g, = cple;) 9)
Synchronous moving corresponds to the lowest frequency (m=1).

The conditions at which the synchronous form of vibrations of an output link is strongly broken
were received. Usually it corresponds to the most deformed site of the main shaft (a mode of

type 2, Fig.7b). In this case the plots g, for first three mechanisms (i =3,5,7) differ a little, but

for the coordinate g, not damping vibrations and violation of synchronism are observed.

Strong additional excitation of the mechanism 7 is arise due a specific influence of the
subsystem formed by the previous mechanisms, which energy is partially “pumped over” in the
asynchronous form. Thus the violating of dynamic stability conditions on finite time intervals
plays a large role (see above). At vibratory impact modes the spectrum of frequency can be
change, and the level of vibration increase. For analysis of these phenomena the method harmo-
nious linearization of force was used [12].

One of ways for the constructive decision of the problem for elimination of asynchronous
modes with large amplitudes is the transition to branched-ring structured drive, where separate
sections replace the long actuator with limited number of mechanisms.

4. The effects of excitation vibratory regimes caused by non-stationary friction in
kinematic pairs of cyclic mechanisms.

Preliminary remarks. As it was shown above one of sources of accompanying vibration
are the distortions of continuity of power or kinematic perturbations and collisions by reversals
in clearances [2], [5], [8]. The other source of accompanying vibrations is connected with the
forces of friction.

The study of frictional oscillations in mechanisms is limited more often to case, when the
coefficient of friction in time of rest differs from the coefficient in time of motion. However
modification of these coefficients is the reason of self-oscillations only with small relative ve-
locities between rubbing surfaces. Meanwhile in mechanisms, which realize the programmed
motion of operating members, the frictional self-oscillatory regimes can arise even in the case
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with large velocities.

Usually it happens when the drive include the self-locking mechanisms (for example, -
worm- and-wheel mechanism). The similar situation came into existence in cyclic mechanisms
with “nonreversible” kinematic pairs, in particular, when the line of the reaction does not coin-
cide with direction of the force of friction in prismatic kinematic pair [13] .

Dynamic model. The elementary mechanisms, in which the dynamic effects under study
are best demonstrated, are shown in Fig.8. We have considered these effects by the example of a
dynamic model of an output link of the slider-crank mechanism (Fig.9). The following symbols
here are accepted: c,, Wy - coefficients of stiffness and dissipation; S-center of the masses of
slider ; P=-mI1"a’-P,, where Py- external force; I1"=d’Il/d¢’; II(¢) - position function of slider;
w=d/dt; ¢ - the coordinate of input link; 4,4,k - constructive sizes show on Figure; « - angle
of pressure.

The forces of friction in quads is equal

F=F;+Fy=- pysign vol Rl ¢(ho, h;, hye)cosa (10)
where 1y - coefficient of friction; vy - velocity of the slider in rigid mechanism; R - reaction in
the hinge B (in the assumption of relative small forces on a coupler).

Fig. 9. Dynamic model

According to (10) the vibration of slider are described by the nonlinear differential equation
mg +b(@)g +c(9)q =—1,C -signv, (b()g +c(@)g( — mIl"w® ~ R, (11)

where ¢ = x —I1(p) — the deviation of the coordinate of slider from the programmed motion;
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¢ =c,cos’ o — the reduced coefficient of stiffness; b — coefficient of equivalent linear resis-

tance.
Let us next reduce equation (11) to the following form:

q"+¥(q.9',0) = ~11'(0) = wy (9), (12)
where ()’ =d/dp; = ot —"nondimensional time"; ¥ = 2n,q" + k, (1 + - signv - signg) ;
2n, =b/(mw’); p=Eu,— reduced coefficient of friction, w, =B, /m; v=T1"+q' (here
is accept sign(bg + cq) = signg , that occurs practically with real values of parameters).

On such mechanisms the “design” parameter g = 2hy/h > 1, therefore p > p.

Frequency and dissipative characteristics. By the approximated solution of equation
(12) and by analysis the combination of methods of harmonic linearization and fictitious oscilla-
tor was used [3]. The right-hand side of the equation (12) is a slowly varying function, therefore
the approximate solution we shall seek as

q =Ao(@) + A(@)sin0. (13)

Here Ay(p),A(p) - slowly varying functions; 0 - fast varying phase, corresponding to vibrations
with slowly varying “natural” frequency.
Based on the solution (13), let us present the nonlinear function ¥ as

Y~¥ +%¥_.cosO+¥;sin0, (14)

where Wy, W, ¥s - the coefficients, which are depending on “slow time”:
1 27 1 27 1 21 .
W= [ W(,00d0; ¥.=—[P(0,0)c0s0d0; ¥, ==W(p,0)sin0d0.
2y Ty T

The summarized velocity v=IT"+¢q’ changes sign only in a small vicinity of values ¢ that are cor-
responding to change of a sign of I7”. If the sign ¢ does not vary, than on the given part of ki-
nematic cycle n=(I#wny and K~(1#whkys; here 2n=W¥./(Ak), K=¥/A; ki'=c/(ima’);
no=wky/(4m). Further let us take a look at a more complicated case, when ¢ of the period of “fast’
motion changes the sign.

Let us consider a new variable y= arcsin(4,/4). On the period 0€[0,2n] the change of
sign g happens twice, namely with y=y; and y=y,. Than after some simplifications by a slow
modification of functions A(¢p), Ao(p) we get

4, :Wko‘z[1+%usignv(y+0,53in2y)]‘l; (15)
T
k*? :k§[1+£u-signv(y+0.53in2y)] ; (16)
T
2n=2n, — k- signv-sin2y-sin(0.5Ay)/ nk, (17)

where y, Ay = y»—y; the average value and increment of this function an a period of a “fast” mo-
tion t=27/k; W=-I1"-w; W'=dW/d . The requirement sign v=const during the period t reduces to
the following condition:

| )| > arcsin | W/(KIT)] (18)
In the small-sized zones, which are in a vicinity of change of sign v a force of friction exhibits
itself as a strong dissipative factor.
The plots of nondimensional “natural” frequency f;=k’/ks’ are listed on Fig.10.
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Fig. 10. Curves fi(y,u)

With purposes of convenience of the analysis the sign A, is taken into account directly in

function vy, therefore further we shall accept A0=|AO|. Besides we shall consider p>0, when the
force of friction is directed against a velocity of an output link, and p<0 - on the direction of a
velocity. Both these cases are illustrated in Fig.1.
With application of (15)—(17) alongside with condition (18) the condition | 4¢ < 4 should be also
observed. This condition testifies that are in existence a critical value of amplitude A=A+, de-
pending from exterior disturbances, below which the nonlinear properties of a system practically
are not exhibited.

Conditions of excitation of self-occultation regimes. Let us introduce into consideration
an equivalent instantaneous value of logarithmic decrement

9=90+9,+95,. (19)

Here 99=0,5y, - corresponds to dissipation of the drive; 3, to the dissipation at Coulombic
friction; 9, = -27(0,5 - v)k’dk / dp , where v=0,1,2 corresponds to vibration’s motion, veloci-
ties, and accelerations [2], [3]. [5], [10]. (The parameter &, is taking into account a modifica-
tion of amplitudes owing to variability of frequency.)

The main objective of this material is to study the nonlinear vibrations connected with friction.

Because of this the influence of a last addend of formula (10) that corresponds to ko=po/®w=const,
may be disregarded. Based on the (6)-(8),(10) in such cases we have

9=9, - oW Signy Conv—05)k M (o)
ko (W ((f, +2p-sin2y -signv/n) do

where f, =0.5u-sin 2y[\/f; siny — (v—0.5)/],

As following from (20), under certain conditions there come into being a possibility of “negative
damping”, when 9<0. In this case the conditions of dynamic stability an any time interval of the
kinematic cycle are disrupted [2], [5]. The variability of the sign of “damping” come to the exis-
tence a specific quasiperiodic regime, which can be treated as self-oscillations supported by
nonstationary friction.
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For scotch-yoke mechanism the following correction should be adopted: there is a need to insert
into formula (10) {=Cmax|sing| instead of C=const.

Computer simulation of self-oscillation regimes. For detection of qualitative peculiarities of the
established vibration regimes and to test the validity of obtained analytical dependencies the
computer-simulation was carried out over a wide range of variation of parameters. On Fig.11 the
plots of function k(¢)=x"/IT' for typical dynamic regimes are listed. The function k(¢) character-
izes the ratio between accelerations allowed for vibration and with a given programmed motion.
The following input dates were here accepted: H”:5,236-10’200sqo, m; ko-py/0=10; 9y=0,2.
With u=0,75 as we might expect according to the formula (7),the lowering of “natural” fre-
quency occurs when 0<p<n/2; n<e<3m/2, and with u=—0,75 when n/2<e<n; 31/2<@<2m.
According to the formula (11) distortions of the dynamic stability and the excitation of non-
stationary self-oscillations is possible with sign(/>vW’)=1. The similar situation for the most part
occurs in the first and second quadrants with pu>0, and in the second and fourth - with p<O0.

With u=0,5 it is possible to upset the self-oscillations with insignificant modifications of parame-
ters. On this case in zone of sign change of velocity the force of friction plays a role of essential
dissipative factor.

With p=0,95 besides highly essential distortions of programmed motion occurs well-defined re-
laxation self-oscillations. However, these regimes, which were close to self-locking, do not rep-
resent a practical interest.

In the case with installation the spring unloader between a slider and housing with a stiffness fac-
tor c,=ma’ , we have 1<1,25. Here it is possible to realize the acceptable conditions of operation
even in the case when exists strong relaxation self-oscillations with absence of a dynamic
unloading.

K K
NL U= 0.75 u=—0.75
1—k
I ﬂ
‘ A 1 A /l\ 1 { \ Il | f }
1o V V ¢ Ao ! I
1 a4k
21 2L
K K
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Fig. 11. Plots y(¢)

Hence, it is determined, that the variable force of friction on defined phases of a kinematic cycle
can have not only dissipative character, but also play a destabilizing role. In such cases the con-
ditions of a dynamic stability can be broken, and self-oscillations can arise.
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